Wednesday, November 9, 2016

Pronóstico De La Demanda Por Media Móvil


OR-Notes OR-Notes son una serie de notas introductorias sobre temas que se encuentran bajo el amplio encabezamiento del campo de investigación de operaciones (OR). Originalmente fueron utilizados por mí en un curso introductorio de OR que doy en el Imperial College. Ahora están disponibles para su uso por cualquier estudiante y maestro interesado en OR sujeto a las siguientes condiciones. Puede encontrar una lista completa de los temas disponibles en OR-Notes aquí. Ejemplos de pronóstico Ejemplo de pronóstico 1996 Examen UG La demanda de un producto en cada uno de los últimos cinco meses se muestra a continuación. Utilice una media móvil de dos meses para generar una previsión de demanda en el mes 6. Aplique el suavizado exponencial con una constante de suavizado de 0.9 para generar una previsión de demanda de demanda en el mes 6. Cuál de estos dos pronósticos prefiere y por qué? El promedio móvil para los meses dos a cinco es dado por: El pronóstico para el mes seis es sólo el promedio móvil para el mes antes de que es decir, el promedio móvil para el mes 5 m 5 2350. Aplicando suavizado exponencial con una constante de suavizado de 0,9 obtenemos: Antes de que el pronóstico para el mes seis sea apenas el promedio para el mes 5 M 5 2386 Para comparar los dos pronósticos calculamos la desviación cuadrada media (MSD). Si hacemos esto, encontramos que para el promedio móvil MSD (15 - 19) sup2 (18 - 23) sup2 (21-24) sup2 / 3 16.67 y para el promedio exponencialmente suavizado con una constante de suavización de 0.9 MSD (13-17) ) Sup2 (18.76 - 23) sup2 (22.58 - 24) sup2 / 4 10.44 En general, vemos que el suavizado exponencial parece dar las mejores previsiones de un mes de anticipación ya que tiene un MSD más bajo. Por lo tanto, preferimos el pronóstico de 2386 que ha sido producido por suavizado exponencial. Ejemplo de pronóstico 1994 UG examen La siguiente tabla muestra la demanda de un nuevo aftershave en una tienda para cada uno de los últimos 7 meses. Calcular una media móvil de dos meses para los meses dos a siete. Cuál sería su pronóstico para la demanda en el mes ocho? Aplicar el suavizado exponencial con una constante de suavizado de 0,1 para obtener una previsión de la demanda en el mes ocho. Cuál de las dos previsiones para el mes ocho prefieres y por qué? El encargado de la tienda cree que los clientes están cambiando a este nuevo aftershave de otras marcas. Analice cómo puede modelar este comportamiento de conmutación e indicar los datos que necesitaría para confirmar si se está produciendo o no esta conmutación. Solución El promedio móvil de dos meses para los meses dos a siete es dado por: El pronóstico para el mes ocho es sólo la media móvil para el mes anterior que es decir, el promedio móvil para el mes 7 m 7 46. Aplicando suavizado exponencial con una constante de suavizado de 0,1 Obtenemos: Como antes de la previsión para el mes ocho es sólo el promedio para el mes 7 M 7 31,11 31 (como no podemos tener la demanda fraccional). Para comparar los dos pronósticos se calcula la desviación cuadrática media (MSD). Si hacemos esto encontramos que para el promedio móvil y para el promedio exponencialmente suavizado con una constante de suavizado de 0,1 En general, vemos que el promedio móvil de dos meses parece dar el mejor pronóstico de un mes de anticipación, ya que tiene un MSD más bajo. Por lo tanto, preferimos la previsión de 46 que se ha producido por la media móvil de dos meses. Para examinar la conmutación que tendría que utilizar un modelo de proceso de Markov, donde las marcas de estados y que se necesita información de estado inicial y las probabilidades de conmutación de clientes (a partir de encuestas). Necesitamos ejecutar el modelo en datos históricos para ver si tenemos un ajuste entre el modelo y el comportamiento histórico. Ejemplo de pronóstico 1992 UG examen La siguiente tabla muestra la demanda de una determinada marca de afeitar en una tienda para cada uno de los últimos nueve meses. Calcule una media móvil de tres meses para los meses tres a nueve. Cuál sería su pronóstico para la demanda en el mes diez? Aplicar el suavizado exponencial con una constante de suavizado de 0,3 para obtener una previsión de la demanda en el mes diez. Cuál de los dos pronósticos para el mes diez prefieres y por qué? Solución El promedio móvil de tres meses para los meses 3 a 9 es dado por: El pronóstico para el mes 10 es sólo el promedio móvil para el mes anterior que es decir el promedio móvil para el mes 9 M 9 20,33. Por lo tanto (como no podemos tener demanda fraccional) el pronóstico para el mes 10 es 20. Aplicando el suavizado exponencial con una constante de suavizado de 0.3 obtenemos: Como antes la predicción para el mes 10 es sólo el promedio para el mes 9 M 9 18.57 19 (como nosotros No puede tener demanda fraccional). Para comparar los dos pronósticos se calcula la desviación cuadrática media (MSD). Si hacemos esto, encontramos que para el promedio móvil y para el promedio exponencialmente suavizado con una constante de suavizado de 0,3 En general, vemos que el promedio móvil de tres meses parece dar el mejor pronóstico de un mes de anticipación, ya que tiene un MSD más bajo. Por lo tanto, preferimos la previsión de 20 que se ha producido por el promedio móvil de tres meses. Ejemplo de pronóstico 1991 UG examen La siguiente tabla muestra la demanda de una determinada marca de fax en un gran almacén en cada uno de los últimos doce meses. Calcular la media móvil de cuatro meses para los meses 4 a 12. Cuál sería su pronóstico para la demanda en el mes 13 Aplicar suavizado exponencial con una constante de suavizado de 0,2 para obtener una previsión de la demanda en el mes 13. Cuál de las dos previsiones para el mes 13 Prefiere y por qué Qué otros factores, no considerados en los cálculos anteriores, pueden influir en la demanda del fax en el mes 13 Solución La media móvil de cuatro meses para los meses 4 a 12 está dada por: m 4 (23 19 15 12) / 4 17,25 m 5 (27 23 19 15) / 4 21 m 6 (30 27 23 19) / 4 24,75 m 7 (32 30 27 23) / 4 28 m 8 (33 32 30 27) / 4 30,5 m 9 ( 37 33 32 30) / 4 33 m 10 (41 37 33 32) / 4 35,75 m 11 (49 41 37 33) / 4 40 m 12 (58 49 41 37) / 4 46,25 El pronóstico para el mes 13 es sólo el movimiento Promedio para el mes anterior, es decir, el promedio móvil para el mes 12 m 12 46,25. Por lo tanto (como no podemos tener demanda fraccional) el pronóstico para el mes 13 es 46. Aplicando el suavizado exponencial con una constante de suavizado de 0.2 obtenemos: Como antes la previsión para el mes 13 es sólo el promedio para el mes 12 M 12 38.618 39 (como nosotros No puede tener demanda fraccional). Para comparar los dos pronósticos se calcula la desviación cuadrática media (MSD). Si hacemos esto, encontramos que para el promedio móvil y para el promedio exponencialmente suavizado con una constante de suavizado de 0,2 En general, vemos que el promedio móvil de cuatro meses parece dar el mejor pronóstico de un mes de anticipación, ya que tiene un MSD más bajo. Por lo tanto, preferimos la previsión de 46 que se ha producido por el promedio móvil de cuatro meses. La demanda estacional los cambios de precio de la publicidad, tanto esta marca y otras marcas situación económica general de la nueva tecnología Ejemplo de pronóstico 1989 UG examen La siguiente tabla muestra la demanda de una determinada marca de horno de microondas en un almacén en cada uno de los últimos doce meses. Calcular una media móvil de seis meses para cada mes. Cuál sería su pronóstico para la demanda en el mes 13 Aplicar suavizado exponencial con una constante de suavizado de 0,7 para obtener una previsión de la demanda en el mes 13. Cuál de las dos previsiones para el mes 13 prefieres y por qué? Solución Ahora no podemos calcular una Media móvil de seis meses hasta que tengamos al menos 6 observaciones - es decir, sólo podemos calcular tal promedio a partir del mes 6 en adelante. Por lo tanto, tenemos: m 6 (34 32 30 29 31 27) / 6 30,50 m 7 (36 34 32 30 29 31) / 6 32,00 m 8 (35 36 34 32 30 29) / 6 32,67 m 9 (37 35 36 34 32 30) / 6 34,00 m 10 (39 37 35 36 34 32) / 6 35,50 m 11 (40 39 37 35 36 34) / 6 36,83 m 12 (42 40 39 37 35 36) / 6 38,17 La previsión para el mes 13 Es sólo el promedio móvil para el mes anterior, es decir, el promedio móvil para el mes 12 m 12 38,17. Por lo tanto (como no podemos tener demanda fraccional) el pronóstico para el mes 13 es 38. Aplicando el suavizado exponencial con una constante de suavizado de 0,7 obtendremos: 3 Comprensión de los niveles y métodos de previsión Puede generar tanto previsiones de detalle ) Que reflejan los patrones de demanda de productos. El sistema analiza las ventas pasadas para calcular los pronósticos usando 12 métodos de pronóstico. Los pronósticos incluyen información detallada a nivel de artículo e información de nivel superior sobre una sucursal o la empresa en su conjunto. 3.1 Criterios de evaluación del desempeño de pronóstico Dependiendo de la selección de las opciones de procesamiento y de las tendencias y patrones en los datos de ventas, algunos métodos de pronóstico tienen mejores resultados que otros para un conjunto de datos históricos dado. Un método de pronóstico apropiado para un producto puede no ser apropiado para otro producto. Es posible que encuentre que un método de pronóstico que proporcione buenos resultados en una etapa del ciclo de vida del producto permanezca adecuado durante todo el ciclo de vida. Puede seleccionar entre dos métodos para evaluar el rendimiento actual de los métodos de pronóstico: Porcentaje de precisión (POA). Desviación absoluta media (MAD). Ambos métodos de evaluación de rendimiento requieren datos históricos de ventas para un período que especifique. Este período se denomina período de retención o período de mejor ajuste. Los datos de este período se utilizan como base para recomendar qué método de pronóstico se utilizará para realizar la siguiente proyección de pronóstico. Esta recomendación es específica para cada producto y puede cambiar de una generación de pronóstico a otra. 3.1.1 Mejor ajuste El sistema recomienda la mejor previsión de ajuste aplicando los métodos de previsión seleccionados al historial de pedidos de ventas anteriores y comparando la simulación de pronóstico con el historial real. Cuando se genera un pronóstico de ajuste óptimo, el sistema compara los historiales reales de órdenes de venta con los pronósticos para un período de tiempo específico y calcula con qué precisión cada método de pronóstico predijo las ventas. A continuación, el sistema recomienda el pronóstico más preciso como el mejor ajuste. Este gráfico ilustra las mejores previsiones de ajuste: Figura 3-1 Pronóstico de mejor ajuste El sistema utiliza esta secuencia de pasos para determinar el mejor ajuste: Utilice cada método especificado para simular un pronóstico para el período de retención. Compare las ventas reales con las previsiones simuladas para el período de retención. Calcular el POA o el MAD para determinar qué método de pronóstico coincide más estrechamente con las ventas reales pasadas. El sistema utiliza POA o MAD, en función de las opciones de proceso que seleccione. Recomendar una mejor previsión de ajuste por el POA que es más cercano al 100 por ciento (más o menos) o el MAD que está más cerca de cero. 3.2 Métodos de pronóstico JD Edwards EnterpriseOne Forecast Management utiliza 12 métodos para la previsión cuantitativa e indica qué método proporciona el mejor ajuste para la situación de pronóstico. Esta sección discute: Método 1: Porcentaje sobre el año pasado. Método 2: Porcentaje calculado sobre el año pasado. Método 3: año pasado a este año. Método 4: Promedio móvil. Método 5: Aproximación lineal. Método 6: Regresión de mínimos cuadrados. Método 7: Aproximación de Segundo Grado. Método 8: Método flexible. Método 9: Promedio móvil ponderado. Método 10: Suavizado lineal. Método 11: suavizado exponencial. Método 12: suavizado exponencial con tendencia y estacionalidad. Especifique el método que desea utilizar en las opciones de proceso del programa Generación de pronósticos (R34650). La mayoría de estos métodos proporcionan un control limitado. Por ejemplo, puede especificar el peso asignado a los datos históricos recientes o el intervalo de fechas de los datos históricos que se utilizan en los cálculos. Los ejemplos de la guía indican el procedimiento de cálculo para cada uno de los métodos de pronóstico disponibles, dados un conjunto idéntico de datos históricos. Los ejemplos de métodos en la guía usan parte o todos estos conjuntos de datos, que son datos históricos de los últimos dos años. La previsión de proyección va en el próximo año. Estos datos del historial de ventas son estables con pequeños aumentos estacionales en julio y diciembre. Este patrón es característico de un producto maduro que podría estar acercándose a la obsolescencia. 3.2.1 Método 1: Porcentaje sobre el año pasado Este método utiliza la fórmula Porcentaje sobre el año pasado para multiplicar cada período de pronóstico por el incremento o disminución porcentual especificado. Para pronosticar la demanda, este método requiere el número de períodos para el mejor ajuste más un año del historial de ventas. Este método es útil para pronosticar la demanda de artículos estacionales con crecimiento o disminución. 3.2.1.1 Ejemplo: Método 1: Porcentaje sobre el año pasado La fórmula Porcentaje sobre el año pasado multiplica los datos de ventas del año anterior por un factor que especifique y luego los proyectos que resultan durante el año siguiente. Este método puede ser útil en el presupuesto para simular el efecto de una tasa de crecimiento especificada o cuando el historial de ventas tiene un componente estacional significativo. Especificaciones de pronóstico: Factor de multiplicación. Por ejemplo, especifique 110 en la opción de procesamiento para aumentar los datos de historial de ventas de años anteriores en un 10 por ciento. Historial de ventas requerido: Un año para calcular el pronóstico, más el número de períodos de tiempo que se requieren para evaluar el rendimiento de pronóstico (períodos de mejor ajuste) que especifique. Esta tabla es la historia usada en el cálculo de pronósticos: pronóstico de febrero es igual a 117 veces 1,1 128,7 redondeado a 129. Pronóstico de marzo es igual a 115 veces 1,1 126,5 redondeado a 127. 3.2.2 Método 2: Porcentaje calculado sobre el año pasado Este método utiliza el porcentaje calculado Fórmula del año pasado para comparar las ventas pasadas de períodos especificados a las ventas de los mismos períodos del año anterior. El sistema determina un porcentaje de aumento o disminución, y luego multiplica cada período por el porcentaje para determinar el pronóstico. Para predecir la demanda, este método requiere el número de períodos del historial de pedidos de ventas más un año de historial de ventas. Este método es útil para pronosticar la demanda a corto plazo de artículos estacionales con crecimiento o disminución. 3.2.2.1 Ejemplo: Método 2: Porcentaje calculado durante el año pasado La fórmula calculada sobre el año pasado multiplica los datos de ventas del año anterior por un factor calculado por el sistema y, a continuación, proyecta ese resultado para el año siguiente. Este método puede ser útil para proyectar el efecto de extender la tasa de crecimiento reciente de un producto al siguiente año, a la vez que se preserva un patrón estacional que está presente en el historial de ventas. Especificaciones de pronóstico: Rango de historial de ventas para utilizar en el cálculo de la tasa de crecimiento. Por ejemplo, especifique n igual a 4 en la opción de proceso para comparar el historial de ventas de los cuatro períodos más recientes a esos mismos cuatro períodos del año anterior. Utilice la relación calculada para hacer la proyección para el próximo año. Historial de ventas requerido: Un año para calcular el pronóstico más el número de periodos de tiempo que se requieren para evaluar el desempeño del pronóstico (períodos de mejor ajuste). Esta tabla es la historia utilizada en el cálculo del pronóstico, dado n 4: Pronóstico de febrero es igual a 117 veces 0,9766 114,26 redondeado a 114. Pronóstico de marzo es igual a 115 veces 0,9766 112,31 redondeado a 112. 3.2.3 Método 3: Año pasado a este año Este método utiliza Ventas de los últimos años para los próximos años. Para predecir la demanda, este método requiere el número de periodos que mejor se ajustan más un año del historial de pedidos de ventas. Este método es útil para pronosticar la demanda de productos maduros con demanda de nivel o demanda estacional sin una tendencia. 3.2.3.1 Ejemplo: Método 3: Año pasado a este año La fórmula Año pasado a este año copia los datos de ventas del año anterior al año siguiente. Este método puede ser útil en el presupuesto para simular ventas en el nivel actual. El producto es maduro y no tiene tendencia a largo plazo, pero puede haber un patrón de demanda estacional significativo. Especificaciones de pronóstico: Ninguna. Historial de ventas requerido: Un año para calcular el pronóstico más el número de periodos de tiempo que se requieren para evaluar el desempeño del pronóstico (períodos de mejor ajuste). Esta tabla es la historia utilizada en el cálculo de pronósticos: Pronóstico de enero es igual a enero del año pasado con un valor de pronóstico de 128. Pronóstico de febrero es igual a febrero del año pasado con un valor de pronóstico de 117. Pronóstico de marzo es igual a marzo del año pasado con un valor de previsión de 115. 3.2.4 Método 4: Promedio móvil Este método utiliza la fórmula Promedio móvil para promediar el número especificado de períodos para proyectar el siguiente período. Deberá recalcularlo con frecuencia (mensual o al menos trimestral) para reflejar el cambio en el nivel de demanda. Para predecir la demanda, este método requiere el número de periodos que mejor se ajustan más el número de períodos del historial de órdenes de venta. Este método es útil para pronosticar la demanda de productos maduros sin una tendencia. 3.2.4.1 Ejemplo: Método 4: Moving Average Moving Average (MA) es un método popular para promediar los resultados del historial de ventas reciente para determinar una proyección a corto plazo. El método de pronóstico de MA está a la zaga de las tendencias. El sesgo de pronóstico y los errores sistemáticos ocurren cuando el historial de ventas del producto muestra tendencias fuertes o patrones estacionales. Este método funciona mejor para los pronósticos a corto plazo de productos maduros que para productos que están en las etapas de crecimiento o obsolescencia del ciclo de vida. Especificaciones de pronóstico: n es igual al número de períodos del historial de ventas para usar en el cálculo de pronóstico. Por ejemplo, especifique n 4 en la opción de procesamiento para utilizar los cuatro períodos más recientes como base para la proyección en el siguiente período de tiempo. Un valor grande para n (como 12) requiere más historial de ventas. Esto resulta en un pronóstico estable, pero es lento para reconocer los cambios en el nivel de ventas. Por el contrario, un valor pequeño para n (como 3) es más rápido para responder a los cambios en el nivel de ventas, pero el pronóstico podría fluctuar tan ampliamente que la producción no puede responder a las variaciones. Historial de ventas requerido: n más el número de periodos de tiempo que se requieren para evaluar el rendimiento de la previsión (períodos de mejor ajuste). Esta tabla es la historia utilizada en el cálculo de la previsión: pronóstico de febrero es igual a (114 119 137 125) / 4 123.75 redondeado a 124. Pronóstico de marzo es igual a (119 137 125 124) / 4 126,25 redondeado a 126. 3.2.5 Método 5: Aproximación lineal Este método utiliza la fórmula de aproximación lineal para calcular una tendencia a partir del número de períodos del historial de órdenes de venta y para proyectar esta tendencia al pronóstico. Debe recalcular la tendencia mensualmente para detectar cambios en las tendencias. Este método requiere el número de períodos de mejor ajuste más el número de períodos especificados del historial de órdenes de venta. Este método es útil para predecir la demanda de nuevos productos o productos con tendencias positivas o negativas consistentes que no se deban a fluctuaciones estacionales. 3.2.5.1 Ejemplo: Método 5: Aproximación lineal La aproximación lineal calcula una tendencia que se basa en dos puntos de datos del historial de ventas. Estos dos puntos definen una línea de tendencia recta que se proyecta hacia el futuro. Utilice este método con precaución porque los pronósticos a largo plazo son aprovechados por pequeños cambios en sólo dos puntos de datos. Especificaciones de pronóstico: n es igual al punto de datos en el historial de ventas que se compara con el punto de datos más reciente para identificar una tendencia. Por ejemplo, especifique n 4 para utilizar la diferencia entre diciembre (datos más recientes) y agosto (cuatro períodos antes de diciembre) como base para calcular la tendencia. Historial de ventas mínimo requerido: n más 1 más el número de periodos de tiempo que se requieren para evaluar el rendimiento de la previsión (períodos de mejor ajuste). Esta tabla es la historia utilizada en el cálculo del pronóstico: Pronóstico de enero Diciembre del año pasado 1 (Tendencia) que es igual a 137 (1 vez 2) 139. Pronóstico de febrero Diciembre del año pasado 1 (Tendencia) que es igual a 137 (2 veces 2) 141. El método de regresión de mínimos cuadrados (LSR) deriva una ecuación que describe una relación de línea recta entre los datos de ventas históricas Y el paso del tiempo. LSR ajusta una línea al rango seleccionado de datos de modo que se minimiza la suma de los cuadrados de las diferencias entre los puntos de datos de ventas reales y la línea de regresión. El pronóstico es una proyección de esta línea recta hacia el futuro. Este método requiere el historial de datos de ventas para el período que se representa por el número de períodos mejor ajustados más el número especificado de períodos de datos históricos. El requisito mínimo es dos puntos de datos históricos. Este método es útil para pronosticar la demanda cuando existe una tendencia lineal en los datos. 3.2.6.1 Ejemplo: Método 6: Regresión lineal de regresión de mínimos cuadrados, o Regresión de mínimos cuadrados (LSR), es el método más popular para identificar una tendencia lineal en los datos históricos de ventas. El método calcula los valores para ayb que se utilizarán en la fórmula: Esta ecuación describe una línea recta, donde Y representa las ventas y X representa el tiempo. La regresión lineal es lenta para reconocer los puntos de giro y los cambios en la función escalonada de la demanda. La regresión lineal se ajusta en línea recta a los datos, incluso cuando los datos son estacionales o mejor descritos por una curva. Cuando los datos del historial de ventas siguen una curva o tienen un patrón estacional fuerte, se producen sesgos de previsión y errores sistemáticos. Especificaciones de pronóstico: n es igual a los períodos del historial de ventas que se utilizarán para calcular los valores de ayb. Por ejemplo, especifique n 4 para utilizar el historial de septiembre a diciembre como base para los cálculos. Cuando los datos están disponibles, un n más grande (como n 24) se utilizaría normalmente. LSR define una línea para tan sólo dos puntos de datos. Para este ejemplo, se escogió un pequeño valor para n (n 4) para reducir los cálculos manuales que se requieren para verificar los resultados. Historial de ventas mínimo requerido: n períodos más el número de periodos de tiempo que se requieren para evaluar el desempeño de la previsión (períodos de mejor ajuste). Esta tabla es la historia utilizada en el cálculo de pronóstico: pronóstico de marzo es igual a 119.5 (7 veces 2.3) 135.6 redondeado a 136. 3.2.7 Método 7: Aproximación de Segundo Grado Para proyectar el pronóstico, este método utiliza la fórmula de Aproximación de Segundo Grado para trazar una curva Que se basa en el número de períodos del historial de ventas. Este método requiere el número de periodos mejor ajustados más el número de períodos del historial de pedidos de ventas tres veces. Este método no es útil para pronosticar la demanda a largo plazo. 3.2.7.1 Ejemplo 7: Aproximación de Segundo Grado La Regresión Lineal determina los valores para ayb en la fórmula de pronóstico Y a b X con el objetivo de ajustar una línea recta a los datos del historial de ventas. La aproximación de segundo grado es similar, pero este método determina los valores de a, by c en la fórmula de pronóstico: Y a b X c X 2 El objetivo de este método es ajustar una curva a los datos del historial de ventas. Este método es útil cuando un producto está en la transición entre las etapas del ciclo de vida. Por ejemplo, cuando un nuevo producto pasa de la fase de introducción a la de crecimiento, la tendencia de ventas podría acelerarse. Debido al término de segundo orden, el pronóstico puede acercarse rápidamente al infinito o caer a cero (dependiendo de si el coeficiente c es positivo o negativo). Este método es útil sólo en el corto plazo. Especificaciones de pronóstico: la fórmula encuentra a, b yc para ajustar una curva a exactamente tres puntos. Especifique n, el número de períodos de tiempo de datos que se acumulan en cada uno de los tres puntos. En este ejemplo, n 3. Los datos reales de ventas de abril a junio se combinan en el primer punto, Q1. Julio a septiembre se suman para crear Q2, y octubre a diciembre suma a Q3. La curva se adapta a los tres valores Q1, Q2 y Q3. Historial de ventas requerido: 3 veces n períodos para calcular el pronóstico más el número de periodos de tiempo que se requieren para evaluar el desempeño de la previsión (períodos de mejor ajuste). Esta tabla es la historia usada en el cálculo de pronóstico: Q0 (Jan) (Feb) (Mar) Q1 (Abr) (Mayo) (Jun) que es igual a 125 129 137 384 Q2 (Jul) (Aug) (Sep) El siguiente paso consiste en calcular los tres coeficientes a, by c que se utilizarán en la fórmula de previsión Y ab X c X 2. Q1, Q2 y Q3 se presentan en el gráfico, donde el tiempo se representa en el eje horizontal. Q1 representa las ventas históricas totales para abril, mayo y junio y se representa en X 1 Q2 corresponde a julio a septiembre Q3 corresponde a octubre a diciembre y Q4 a enero a marzo. Este gráfico ilustra el trazado de Q1, Q2, Q3 y Q4 para la aproximación de segundo grado: Figura 3-2 Trazado Q1, Q2, Q3 y Q4 para la aproximación de segundo grado Tres ecuaciones describen los tres puntos del gráfico: (1) Q1 (3) Q3 a bX cX 2 donde X 3 (Q3 a 3b 9c) Resuelve las tres ecuaciones simultáneamente Para encontrar b, ay c: Reste la ecuación 1 (1) de la ecuación 2 (2) y resuelva para b: (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c Sustituya esta ecuación por B en la ecuación (3): (3) Q3 a 3 (Q2 ndash Q1) ndash 3c 9c a Q3 ndash 3 (Q2 ndash Q1) Finalmente, sustitúyase estas ecuaciones para ayb en la ecuación (1): (1) Q3 ndash El método de Aproximación de Segundo Grado calcula a, byc como sigue: a Q3 ndash 3 (Q2 ndash Q1) (Q2 ndash Q1) ndash 3c c Q1 c (Q3 ndash Q2) Q1) 370 ndash 3 (400 ndash 384) 370 ndash 3 (16) 322 b (Q2 ndash Q1) ndash3c (400 ndash 384) ndash (3 veces ndash23) 16 69 85 c (Q3 ndash Q2) 2 (370 ndash 400) (384 ndash 400) / 2 ndash23 Este es un cálculo de la predicción de aproximación de segundo grado: Y a bX cX 2 322 85X (ndash23) (X2) Cuando X4, Q4 322 340 ndash 368 294. La Pronóstico es igual a 294/3 98 por período. Cuando X 5, Q5 322 425 ndash 575 172. El pronóstico es igual a 172/3 58,33 redondeado a 57 por período. Cuando X 6, Q 6 322 510 ndash 828 4. El pronóstico es igual a 4/3 1,33 redondeado a 1 por período. Esta es la previsión para el próximo año, del año pasado a este año: 3.2.8 Método 8: Método flexible Este método le permite seleccionar el número de períodos de orden de ventas que se inicia n meses antes de la fecha de inicio prevista y Aplicar un aumento porcentual o disminuir el factor de multiplicación con el que modificar el pronóstico. Este método es similar al método 1, porcentaje sobre el año pasado, excepto que puede especificar el número de períodos que utiliza como base. Dependiendo de lo que selecciona como n, este método requiere períodos mejor ajustados más el número de períodos de datos de ventas que se indica. Este método es útil para pronosticar la demanda de una tendencia planificada. 3.2.8.1 Ejemplo: Método 8: Método Flexible El Método Flexible (Porcentaje sobre n Meses Previo) es similar al Método 1, Porcentaje Sobre el Año Pasado. Ambos métodos multiplican los datos de ventas de un período de tiempo anterior por un factor especificado por usted y luego proyectan ese resultado en el futuro. En el método Porcentaje sobre el año pasado, la proyección se basa en datos del mismo período del año anterior. También puede utilizar el método flexible para especificar un período de tiempo, que no sea el mismo período del último año, para utilizarlo como base para los cálculos. Factor de multiplicación. Por ejemplo, especifique 110 en la opción de procesamiento para aumentar los datos anteriores del historial de ventas en un 10 por ciento. Periodo base. Por ejemplo, n 4 hace que el primer pronóstico se base en datos de ventas en septiembre del año pasado. Historial de ventas mínimo requerido: el número de periodos al período base más el número de periodos de tiempo requeridos para evaluar el desempeño del pronóstico (períodos de mejor ajuste). 3.2.9 Método 9: Promedio móvil ponderado La fórmula Promedio móvil ponderado es similar al método 4, fórmula Moving Average, ya que promedia el historial de ventas de los meses anteriores para proyectar el siguiente historial de ventas. Sin embargo, con esta fórmula puede asignar pesos para cada uno de los períodos anteriores. Este método requiere el número de períodos ponderados seleccionados más el número de períodos que mejor se ajustan a los datos. Al igual que Moving Average, este método está a la zaga de las tendencias de la demanda, por lo que este método no se recomienda para productos con fuertes tendencias o estacionalidad. Este método es útil para pronosticar la demanda de productos maduros con una demanda relativamente nivelada. 3.2.9.1 Ejemplo: Método 9: Promedio móvil ponderado El método del promedio móvil ponderado (WMA) es similar al Método 4, Promedio móvil (MA). Sin embargo, puede asignar pesos desiguales a los datos históricos cuando se utiliza WMA. El método calcula un promedio ponderado del historial de ventas reciente para llegar a una proyección para el corto plazo. Los datos más recientes se asignan generalmente un peso mayor que los datos más antiguos, por lo que WMA es más sensible a los cambios en el nivel de ventas. Sin embargo, el sesgo de pronóstico y los errores sistemáticos ocurren cuando el historial de ventas del producto exhibe fuertes tendencias o patrones estacionales. Este método funciona mejor para pronósticos a corto plazo de productos maduros que para productos en las etapas de crecimiento o obsolescencia del ciclo de vida. El número de períodos del historial de ventas (n) para usar en el cálculo de pronóstico. Por ejemplo, especifique n 4 en la opción de procesamiento para utilizar los cuatro períodos más recientes como base para la proyección en el siguiente período de tiempo. Un valor grande para n (como 12) requiere más historial de ventas. Este valor da como resultado un pronóstico estable, pero es lento reconocer cambios en el nivel de ventas. Por el contrario, un valor pequeño para n (como 3) responde más rápidamente a los cambios en el nivel de ventas, pero el pronóstico puede fluctuar tan ampliamente que la producción no puede responder a las variaciones. El peso que se asigna a cada uno de los períodos de datos históricos. Los pesos asignados deben ser de 1,00. Por ejemplo, cuando n 4, asignar pesos de 0,50, 0,25, 0,15 y 0,10 con los datos más recientes que reciben el mayor peso. Historial de ventas mínimo requerido: n más el número de periodos de tiempo que se requieren para evaluar el rendimiento de la previsión (períodos de mejor ajuste). Esta tabla es la historia usada en el cálculo de pronósticos: Pronóstico de enero es igual a (128 veces 0.10) (119 veces 0,25) (137 veces 0,50) / (0,10 0,15 0,25 0,50) 128,45 redondeado a 128. Pronóstico de febrero es igual a (114 Veces 0,10) (119 veces 0,15) (137 veces 0,25) (128 veces 0,50) / 1 127,5 redondeado a 128. El pronóstico de marzo es igual (119 veces 0,10) (137 veces 0,15) (128 veces 0,25) (128 veces 0,50) / 1 128.45 redondeado a 128. 3.2.10 Método 10: Suavizado lineal Este método calcula un promedio ponderado de datos de ventas anteriores. En el cálculo, este método utiliza el número de períodos del historial de pedidos de ventas (de 1 a 12) que se indica en la opción de proceso. El sistema utiliza una progresión matemática para sopesar los datos en el rango de la primera (menor peso) a la final (más peso). A continuación, el sistema proyecta esta información a cada período del pronóstico. Este método requiere el mejor ajuste de meses más el historial de pedidos de ventas para el número de períodos que se especifican en la opción de proceso. 3.2.10.1 Ejemplo: Método 10: Suavizado lineal Este método es similar al Método 9, WMA. Sin embargo, en lugar de asignar arbitrariamente pesos a los datos históricos, se utiliza una fórmula para asignar pesos que disminuyen linealmente y sumen a 1,00. El método entonces calcula un promedio ponderado del historial de ventas reciente para llegar a una proyección para el corto plazo. Al igual que todas las técnicas de predicción de media móvil lineal, el sesgo de pronóstico y los errores sistemáticos ocurren cuando el historial de ventas del producto muestra tendencias fuertes o patrones estacionales. Este método funciona mejor para pronósticos a corto plazo de productos maduros que para productos en las etapas de crecimiento o obsolescencia del ciclo de vida. N es igual al número de períodos del historial de ventas para usar en el cálculo de pronóstico. Por ejemplo, especifique n igual a 4 en la opción de proceso para utilizar los cuatro períodos más recientes como base para la proyección en el siguiente período de tiempo. El sistema asigna automáticamente los pesos a los datos históricos que disminuyen linealmente y suman a 1,00. Por ejemplo, cuando n es igual a 4, el sistema asigna pesos de 0,4, 0,3, 0,2 y 0,1, con los datos más recientes recibiendo el mayor peso. Historial de ventas mínimo requerido: n más el número de periodos de tiempo que se requieren para evaluar el rendimiento de la previsión (períodos de mejor ajuste). 3.2.11 Método 11: Suavizado exponencial Este método calcula un promedio suavizado, que se convierte en una estimación que representa el nivel general de ventas en los períodos de datos históricos seleccionados. Este método requiere el historial de datos de ventas para el período de tiempo que se representa por el número de períodos mejor ajustados más el número de períodos de datos históricos que se especifican. El requisito mínimo es dos periodos de datos históricos. Este método es útil para pronosticar la demanda cuando no hay tendencia lineal en los datos. 3.2.11.1 Ejemplo: Método 11: suavizado exponencial Este método es similar al método 10, suavizado lineal. En Linear Suavizado, el sistema asigna pesos que disminuyen linealmente a los datos históricos. En Suavizado exponencial, el sistema asigna pesos que se deterioran exponencialmente. La predicción es un promedio ponderado de las ventas reales del período anterior y el pronóstico del período anterior. Alfa es el peso que se aplica a las ventas reales del período anterior. (1 ndash alfa) es el peso que se aplica a la previsión para el período anterior. Los valores de alfa varían de 0 a 1 y generalmente caen entre 0,1 y 0,4. La suma de los pesos es 1,00 (alfa (1 ndash alfa) 1). Debe asignar un valor para la constante de suavizado, alfa. Si no asigna un valor para la constante de suavizado, el sistema calcula un valor supuesto que se basa en el número de períodos del historial de ventas que se especifica en la opción de proceso. Alpha es igual a la constante de suavizado que se utiliza para calcular el promedio suavizado para el nivel general o la magnitud de las ventas. Los valores para el rango de alfa van de 0 a 1. n es igual al rango de datos del historial de ventas para incluir en los cálculos. Generalmente, un año de datos del historial de ventas es suficiente para estimar el nivel general de ventas. Para este ejemplo, se escogió un pequeño valor para n (n 4) para reducir los cálculos manuales que se requieren para verificar los resultados. El suavizado exponencial puede generar una previsión que se basa en tan poco como un punto de datos históricos. Historial de ventas mínimo requerido: n más el número de periodos de tiempo que se requieren para evaluar el rendimiento de la previsión (períodos de mejor ajuste). 3.2.12 Método 12: Suavizado exponencial con tendencia y estacionalidad Este método calcula una tendencia, un índice estacional y un promedio suavizado exponencialmente del historial de órdenes de venta. El sistema entonces aplica una proyección de la tendencia al pronóstico y se ajusta para el índice estacional. Este método requiere el número de periodos mejor ajustados más dos años de datos de ventas, y es útil para elementos que tienen tendencia y estacionalidad en el pronóstico. Puede introducir el factor alfa y beta o hacer que el sistema los calcule. Los factores alfa y beta son la constante de suavizado que el sistema utiliza para calcular el promedio suavizado del nivel general o la magnitud de las ventas (alfa) y el componente de tendencia del pronóstico (beta). 3.2.12.1 Ejemplo: Método 12: suavizado exponencial con tendencia y estacionalidad Este método es similar al método 11, suavizado exponencial, en el que se calcula un promedio suavizado. Sin embargo, el Método 12 también incluye un término en la ecuación de pronóstico para calcular una tendencia suavizada. El pronóstico se compone de un promedio suavizado que se ajusta para una tendencia lineal. Cuando se especifica en la opción de procesamiento, el pronóstico también se ajusta a la estacionalidad. Alfa es igual a la constante de suavizado que se utiliza para calcular el promedio suavizado para el nivel general o la magnitud de las ventas. Los valores para el rango de alfa varían de 0 a 1. Beta es igual a la constante de suavizado que se usa para calcular el promedio suavizado del componente de tendencia del pronóstico. Los valores para beta van de 0 a 1. Si se aplica un índice estacional al pronóstico. El alfa y el beta son independientes entre sí. No tienen que sumar a 1.0. Historial de ventas mínimo requerido: Un año más el número de periodos de tiempo requeridos para evaluar el desempeño del pronóstico (períodos de mejor ajuste). Cuando dos o más años de datos históricos están disponibles, el sistema utiliza dos años de datos en los cálculos. El método 12 utiliza dos ecuaciones Exponential Smoothing y un promedio simple para calcular un promedio suavizado, una tendencia suavizada y un índice estacional promedio simple. Un promedio exponencialmente suavizado: Una tendencia exponencialmente suavizada: Un índice estacional promedio simple: Figura 3-3 Índice Estacional Medio Simple La previsión se calcula a partir de los resultados de las tres ecuaciones: L es la longitud de la estacionalidad (L igual a 12 meses o 52 semanas). T es el período de tiempo actual. M es el número de períodos de tiempo en el futuro del pronóstico. S es el factor de ajuste estacional multiplicativo que se indexa al período de tiempo apropiado. Esta tabla muestra el historial utilizado en el cálculo de pronóstico: Esta sección proporciona una descripción general de las Evaluaciones de pronóstico y discute: Puede seleccionar métodos de previsión para generar hasta 12 pronósticos para cada producto. Cada método de pronóstico podría crear una proyección ligeramente diferente. Cuando se pronostican miles de productos, una decisión subjetiva es impracticable con respecto a qué previsión utilizar en los planes de cada producto. El sistema evalúa automáticamente el rendimiento de cada método de pronóstico que seleccione y para cada producto que ha previsto. Puede seleccionar entre dos criterios de rendimiento: MAD y POA. MAD es una medida del error de pronóstico. POA es una medida del sesgo de pronóstico. Ambas técnicas de evaluación de rendimiento requieren datos reales del historial de ventas durante un período especificado por usted. El período de la historia reciente utilizado para la evaluación se llama período de retención o período de mejor ajuste. Para medir el rendimiento de un método de pronóstico, el sistema: Utiliza las fórmulas de pronóstico para simular una previsión para el período de retención histórico. Hace una comparación entre los datos de ventas reales y el pronóstico simulado para el período de retención. Cuando selecciona varios métodos de pronóstico, este mismo proceso se produce para cada método. Se calculan varias previsiones para el período de retención y se comparan con el historial de ventas conocido para ese mismo período. Se recomienda utilizar el método de pronóstico que produzca el mejor ajuste (el mejor ajuste) entre la previsión y las ventas reales durante el período de retención para su uso en los planes. Esta recomendación es específica para cada producto y puede cambiar cada vez que genere un pronóstico. 3.3.1 Desviación media absoluta Media La desviación absoluta (MAD) es la media (o promedio) de los valores absolutos (o magnitudes) de las desviaciones (o errores) entre los datos reales y los pronosticados. MAD es una medida de la magnitud promedio de los errores a esperar, dado un método de predicción y el historial de datos. Dado que los valores absolutos se utilizan en el cálculo, los errores positivos no anulan los errores negativos. Cuando se comparan varios métodos de pronóstico, el que tiene el MAD más pequeño es el más fiable para ese producto durante ese período de retención. Cuando la predicción es imparcial y los errores se distribuyen normalmente, existe una relación matemática simple entre MAD y otras dos medidas comunes de distribución, que son la desviación estándar y el error cuadrático medio. Por ejemplo: MAD (Sigma (Actual) ndash (Pronóstico)) n Desviación estándar, (sigma) cong 1.25 MAD Error cuadrático medio cong ndashsigma2 Este ejemplo indica el cálculo de MAD para dos de los métodos de pronóstico. En este ejemplo se supone que ha especificado en la opción de proceso que la duración del periodo de retención (períodos de ajuste óptimo) es igual a cinco períodos. 3.3.1.1 Método 1: Año pasado a este año Esta tabla es la historia usada en el cálculo de MAD, dado Períodos de Mejor Ajuste 5: La Media de Desviación Absoluta es igual a (2 1 20 10 14) / 5 9.4. Sobre la base de estas dos opciones, se recomienda el método de media móvil, n 4, ya que tiene el MAD más pequeño, 9,4, para el período de retención dado. 3.3.2 Porcentaje de exactitud El porcentaje de precisión (POA) es una medida del sesgo de previsión. Cuando las previsiones son consistentemente demasiado altas, los inventarios se acumulan y los costos de inventario aumentan. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. En los servicios, la magnitud de los errores de pronóstico suele ser más importante de lo previsto. POA (SigmaForecast sales during holdout period) / (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way. Demand Forecasting Techniques: Moving Average Exponential Smoothing This lesson will discuss demand forecasting with a focus on sales of established goods and services. It will introduce the quantitative techniques of moving average and exponential smoothing to help determine sales demand. What Is Demand Forecasting Once again, its the holiday season. Kids are ready for a visit from Santa, and parents are stressed out over shopping and finances. Businesses are finalizing their operations for the calendar year and preparing to move into whatever lies ahead. ABC Inc. manufactures telephone wire. Their accounting and operations time periods run on a calendar year, so the end of the year allows them to wrap up operations before the holiday break and plan for the beginning of a new year. Its time for managers to prepare and submit their departments operational plans to senior management so they can create an organizational operations plan for the new year. The sales department is stressed out of their minds. Demand for telephone wire was down in 2015 and the general economic data suggests a continuing downturn in construction projects that require telephone wire. Bob, the sales manager, knows that senior management, the board of directors and stakeholders are hoping for an optimistic sales forecast, but he feels the ice of industry recession creeping up behind him to tackle him. Demand forecasting is the method of projecting customer demand for a good or service. This process is a continual one where managers use historical data to calculate what they expect the sales demand for a good or service to be. Bob uses information from the companys past and adds it to economic data from the marketplace to see if sales will grow or decline. Bob uses the results of demand forecasting to set goals for the sales department, while trying to keep in line with company goals. Bob will be able to evaluate the results of the sales department next year to determine how his forecast came out. Bob can use different techniques that are both qualitative and quantitative to determine the growth or decline of sales. Examples of qualitative techniques include: Educated guesses Prediction market Game theory Delphi technique Examples of quantitative techniques include: Extrapolation Data mining Causal models Box-Jenkins models The above listed examples of demand forecasting techniques are only a short list of the possibilities available to Bob as he practices demand forecasting. This lesson will focus on two additional quantitative techniques that are simple to use and provide an objective, accurate forecast. Moving Average Formula A moving average is a technique that calculates the overall trend in a data set. In operations management, the data set is sales volume from historical data of the company. This technique is very useful for forecasting short-term trends. It is simply the average of a select set of time periods. Its called moving because as a new demand number is calculated for an upcoming time period, the oldest number in the set falls off, keeping the time period locked. Lets look at an example of how the sales manager at ABC Inc. will forecast demand using the moving average formula. The formula is illustrated as follows: Moving Average (n1 n2 n3 . ) / n Where n the number of time periods in the data set. The sum of the first time period and all additional time periods chosen is divided by the number of time periods. Bob decides to create his demand forecast based on a 5-year moving average. This means that he will use the sales volume data from the past 5 years as the data for the calculation. Exponential Smoothing Exponential smoothing is a technique that uses an smoothing constant as a predictor of future forecasting. Whenever you use a number in forecasting that is an average, it has been smoothed. This technique takes historical data from previous time periods and applied the calculation for exponential smoothing to forecast future data. In this case, Bob will also apply exponential smoothing to compare against the earlier calculation of a moving average to get a second opinion. The formula for exponential smoothing is as follows. F(t) forecast for 2016 F(t-1) forecast for previous year alpha smoothing constant A (t-1) actual sales from previous year The smoothing constant is a weight that is applied to the equation based on how much emphasis the company places on the most recent data. The smoothing constant is a number between 0 and 1. A smoothing constant of 0.9 would signal that management places a lot of emphasis on the most previous time periods historical sales data. A smoothing constant of 0.1 would signal that management places very little emphasis on the previous time period. The choice of a smoothing constant is hit or miss and can be modified as more data is available. We will use the chart from above with the historical sales volume to calculate the exponential smoothing forecast for 2016. There is an extra column to include forecasted sales volume. This calculation is a fairly efficient formula and quite accurate compared to other techniques of demand forecasting. Lesson Summary Demand forecasting is an essential part of a companys projected plans for future time periods. Different techniques can be used, both qualitative and quantitative, and provide differing sets of data to managers as they forecast demand, especially in sales volume. The moving average and exponential smoothing techniques are both fair examples of methods to use to help forecast demand. Para desbloquear esta lección usted debe ser un Miembro de Estudio. Create your account Earning College Credit Did you knowhellip We have over 79 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. Usted puede probar de los primeros dos años de la universidad y ahorrar miles de su grado. Cualquier persona puede ganar crédito por examen independientemente de su edad o nivel educativo. Transferencia de crédito a la escuela de su elección No está seguro de qué universidad desea asistir a estudio Sin embargo, el estudio tiene miles de artículos sobre cada grado imaginable, área de estudio y carrera que puede ayudarle a encontrar la escuela que es adecuado para usted. Escuelas de Investigación, Grados y Carreras Obtenga la información imparcial que necesita para encontrar la escuela adecuada. Browse Articles By Category

No comments:

Post a Comment