Cómo calcular los promedios móviles en Excel Excel Data Analysis For Dummies, 2nd Edition El comando Data Analysis proporciona una herramienta para calcular promedios móviles y exponencialmente suavizados en Excel. Supongamos, por razones ilustrativas, que usted ha recopilado información diaria sobre la temperatura. Desea calcular el promedio móvil de tres días 8212 el promedio de los últimos tres días 8212 como parte de algún pronóstico meteorológico simple. Para calcular las medias móviles para este conjunto de datos, siga estos pasos. Para calcular una media móvil, primero haga clic en el botón de comando Data Analysis (Análisis de datos) tab8217s. Cuando Excel muestra el cuadro de diálogo Análisis de datos, seleccione el elemento Promedio móvil de la lista y, a continuación, haga clic en Aceptar. Excel muestra el cuadro de diálogo Promedio móvil. Identifique los datos que desea utilizar para calcular el promedio móvil. Haga clic en el cuadro de texto Intervalo de entrada del cuadro de diálogo Promedio móvil. A continuación, identifique el intervalo de entrada, ya sea escribiendo una dirección de rango de hoja de cálculo o utilizando el mouse para seleccionar el rango de hoja de cálculo. Su referencia de rango debe usar direcciones de celdas absolutas. Una dirección de celda absoluta precede la letra de la columna y el número de fila con signos, como en A1: A10. Si la primera celda de su rango de entrada incluye una etiqueta de texto para identificar o describir sus datos, active la casilla de verificación Etiquetas en primera fila. En el cuadro de texto Intervalo, indique a Excel cuántos valores deben incluirse en el cálculo del promedio móvil. Puede calcular un promedio móvil usando cualquier número de valores. De forma predeterminada, Excel utiliza los tres valores más recientes para calcular el promedio móvil. Para especificar que se utilice otro número de valores para calcular el promedio móvil, ingrese ese valor en el cuadro de texto Intervalo. Dígale a Excel dónde colocar los datos del promedio móvil. Utilice el cuadro de texto Rango de salida para identificar el intervalo de hoja de cálculo en el que desea colocar los datos del promedio móvil. En el ejemplo de la hoja de cálculo, los datos del promedio móvil se han colocado en el rango B2 de la hoja de cálculo: B10. (Opcional) Especifique si desea un gráfico. Si desea un gráfico que trace la información del promedio móvil, seleccione la casilla de verificación Salida del gráfico. (Opcional) Indique si desea calcular la información de error estándar. Si desea calcular errores estándar para los datos, seleccione la casilla de verificación Estándar Errores. Excel coloca valores de error estándar junto a los valores de media móvil. (La información de error estándar pasa a C2: C10.) Una vez que haya terminado de especificar qué información de promedio móvil desea calcular y dónde desea colocarla, haga clic en Aceptar. Excel calcula la información del promedio móvil. Nota: Si Excel doesn8217t tiene suficiente información para calcular un promedio móvil para un error estándar, coloca el mensaje de error en la celda. Puede ver varias celdas que muestran este mensaje de error como un valor. Datos suaves elimina la variación aleatoria y muestra las tendencias y los componentes cíclicos Inherente a la recopilación de datos tomados en el tiempo es una forma de variación aleatoria. Existen métodos para reducir la cancelación del efecto debido a la variación aleatoria. Una técnica de uso frecuente en la industria es suavizar. Esta técnica, cuando se aplica correctamente, revela más claramente la tendencia subyacente, los componentes estacionales y cíclicos. Existen dos grupos distintos de métodos de suavizado Métodos de promedio Métodos exponenciales de suavizado Tomar promedios es la forma más sencilla de suavizar los datos Primero investigaremos algunos métodos de promediación, como el promedio simple de todos los datos anteriores. Un gerente de un almacén quiere saber cuánto un proveedor típico ofrece en unidades de 1000 dólares. Se toma una muestra de 12 proveedores, al azar, obteniendo los siguientes resultados: La media o media calculada de los datos 10. El gestor decide usar esto como la estimación para el gasto de un proveedor típico. Es esto una buena o mala estimación? El error cuadrático medio es una forma de juzgar qué tan bueno es un modelo Vamos a calcular el error cuadrático medio. La cantidad verdadera del error gastada menos la cantidad estimada. El error al cuadrado es el error anterior, al cuadrado. El SSE es la suma de los errores al cuadrado. El MSE es la media de los errores al cuadrado. Resultados de MSE por ejemplo Los resultados son: Errores y errores cuadrados La estimación 10 La pregunta surge: podemos usar la media para pronosticar ingresos si sospechamos una tendencia? Un vistazo a la gráfica abajo muestra claramente que no debemos hacer esto. El promedio pesa todas las observaciones pasadas igualmente En resumen, declaramos que El promedio simple o la media de todas las observaciones pasadas es sólo una estimación útil para pronosticar cuando no hay tendencias. Si hay tendencias, utilice estimaciones diferentes que tengan en cuenta la tendencia. El promedio pesa todas las observaciones pasadas igualmente. Por ejemplo, el promedio de los valores 3, 4, 5 es 4. Sabemos, por supuesto, que un promedio se calcula sumando todos los valores y dividiendo la suma por el número de valores. Otra forma de calcular el promedio es añadiendo cada valor dividido por el número de valores, o 3/3 4/3 5/3 1 1.3333 1.6667 4. El multiplicador 1/3 se llama el peso. En general: barra frac fracción izquierda (frac derecha) x1 izquierda (frac derecha) x2,. ,, Izquierda (frac derecha) xn. En la práctica, el promedio móvil proporcionará una buena estimación de la media de las series de tiempo si la media es constante o cambia lentamente. En el caso de una media constante, el mayor valor de m dará las mejores estimaciones de la media subyacente. Un período de observación más largo promediará los efectos de la variabilidad. El propósito de proporcionar un m más pequeño es permitir que el pronóstico responda a un cambio en el proceso subyacente. Para ilustrar, proponemos un conjunto de datos que incorpora cambios en la media subyacente de la serie temporal. La figura muestra las series temporales utilizadas para la ilustración junto con la demanda media a partir de la cual se generó la serie. La media comienza como una constante en 10. Comenzando en el tiempo 21, aumenta en una unidad en cada período hasta que alcanza el valor de 20 en el tiempo 30. Entonces se vuelve constante otra vez. Los datos se simulan sumando a la media un ruido aleatorio de una distribución Normal con media cero y desviación estándar 3. Los resultados de la simulación se redondean al entero más próximo. La tabla muestra las observaciones simuladas utilizadas para el ejemplo. Cuando usamos la tabla, debemos recordar que en cualquier momento dado, sólo se conocen los datos pasados. Las estimaciones del parámetro del modelo, para tres valores diferentes de m se muestran junto con la media de las series temporales de la siguiente figura. La figura muestra la media móvil de la estimación de la media en cada momento y no la previsión. Los pronósticos cambiarían las curvas de media móvil a la derecha por períodos. Una conclusión es inmediatamente aparente de la figura. Para las tres estimaciones, la media móvil se queda por detrás de la tendencia lineal, con el rezago aumentando con m. El retraso es la distancia entre el modelo y la estimación en la dimensión temporal. Debido al desfase, el promedio móvil subestima las observaciones a medida que la media aumenta. El sesgo del estimador es la diferencia en un tiempo específico en el valor medio del modelo y el valor medio predicho por el promedio móvil. El sesgo cuando la media está aumentando es negativo. Para una media decreciente, el sesgo es positivo. El retraso en el tiempo y el sesgo introducido en la estimación son funciones de m. Cuanto mayor sea el valor de m. Mayor es la magnitud del retraso y sesgo. Para una serie cada vez mayor con tendencia a. Los valores de retraso y sesgo del estimador de la media se dan en las ecuaciones siguientes. Las curvas de ejemplo no coinciden con estas ecuaciones porque el modelo de ejemplo no está aumentando continuamente, sino que comienza como una constante, cambia a una tendencia y luego vuelve a ser constante de nuevo. También las curvas de ejemplo se ven afectadas por el ruido. El pronóstico de media móvil de los períodos en el futuro se representa desplazando las curvas hacia la derecha. El desfase y sesgo aumentan proporcionalmente. Las ecuaciones a continuación indican el retraso y sesgo de los períodos de previsión en el futuro en comparación con los parámetros del modelo. Nuevamente, estas fórmulas son para una serie de tiempo con una tendencia lineal constante. No debemos sorprendernos de este resultado. El estimador del promedio móvil se basa en el supuesto de una media constante, y el ejemplo tiene una tendencia lineal en la media durante una parte del período de estudio. Dado que las series de tiempo real rara vez obedecerán exactamente las suposiciones de cualquier modelo, debemos estar preparados para tales resultados. También podemos concluir de la figura que la variabilidad del ruido tiene el efecto más grande para m más pequeño. La estimación es mucho más volátil para el promedio móvil de 5 que el promedio móvil de 20. Tenemos los deseos en conflicto de aumentar m para reducir el efecto de la variabilidad debido al ruido y disminuir m para hacer el pronóstico más sensible a los cambios En promedio El error es la diferencia entre los datos reales y el valor previsto. Si la serie temporal es verdaderamente un valor constante, el valor esperado del error es cero y la varianza del error está compuesta por un término que es una función de y un segundo término que es la varianza del ruido. El primer término es la varianza de la media estimada con una muestra de m observaciones, suponiendo que los datos provienen de una población con una media constante. Este término se minimiza haciendo m tan grande como sea posible. Un m grande hace que el pronóstico no responda a un cambio en la serie temporal subyacente. Para hacer que el pronóstico responda a los cambios, queremos que m sea lo más pequeño posible (1), pero esto aumenta la varianza del error. El pronóstico práctico requiere un valor intermedio. Previsión con Excel El complemento de previsión implementa las fórmulas de promedio móvil. El siguiente ejemplo muestra el análisis proporcionado por el complemento para los datos de muestra en la columna B. Las primeras 10 observaciones se indexan -9 a 0. En comparación con la tabla anterior, los índices de período se desplazan en -10. Las primeras diez observaciones proporcionan los valores iniciales para la estimación y se utilizan para calcular la media móvil para el período 0. La columna MA (10) (C) muestra las medias móviles calculadas. El parámetro de la media móvil m está en la celda C3. La columna Fore (1) (D) muestra un pronóstico para un período en el futuro. El intervalo de pronóstico está en la celda D3. Cuando el intervalo de pronóstico se cambia a un número mayor, los números de la columna Fore se desplazan hacia abajo. La columna Err (1) (E) muestra la diferencia entre la observación y el pronóstico. Por ejemplo, la observación en el tiempo 1 es 6. El valor pronosticado a partir de la media móvil en el tiempo 0 es 11.1. El error entonces es -5.1. La desviación estándar y la media media de desviación (MAD) se calculan en las células E6 y E7, respectivamente.
No comments:
Post a Comment